首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1972篇
  免费   453篇
  国内免费   187篇
化学   1098篇
晶体学   101篇
力学   72篇
综合类   6篇
数学   26篇
物理学   1309篇
  2024年   2篇
  2023年   18篇
  2022年   51篇
  2021年   81篇
  2020年   84篇
  2019年   68篇
  2018年   62篇
  2017年   75篇
  2016年   139篇
  2015年   97篇
  2014年   127篇
  2013年   162篇
  2012年   165篇
  2011年   167篇
  2010年   120篇
  2009年   142篇
  2008年   153篇
  2007年   144篇
  2006年   142篇
  2005年   115篇
  2004年   89篇
  2003年   85篇
  2002年   55篇
  2001年   41篇
  2000年   49篇
  1999年   27篇
  1998年   17篇
  1997年   20篇
  1996年   22篇
  1995年   19篇
  1994年   20篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   7篇
  1989年   9篇
  1988年   1篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1983年   8篇
  1982年   3篇
  1979年   2篇
  1957年   1篇
排序方式: 共有2612条查询结果,搜索用时 21 毫秒
91.
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability.  相似文献   
92.
Stilbene derivatives are well-recognised substructures of molecular switches based on photochemically and/or thermally induced (E)/(Z) isomerisation. We combined a stilbene motif with two benzimidazolium arms to prepare new sorts of supramolecular building blocks and examined their binding properties towards cucurbit[n]urils (n=7, 8) and cyclodextrins (β-CD, γ-CD) in water. Based on the 1H NMR data and molecular dynamics simulations, we found that two distinct complexes with different stoichiometry, i. e., guest@β-CD and guest@β-CD2, coexist in equilibrium in a water solution of the (Z)-stilbene-based guests. We also demonstrated that the bis(benzimidazolio)stilbene guests can be transformed from the (E) into the (Z) form via UV irradiation and back via thermal treatment in DMSO.  相似文献   
93.
Electrochemistry belongs to an important branch of chemistry that deals with the chemical changes produced by electricity and the production of electricity by chemical changes. Therefore, it can not only act a powerful tool for materials synthesis, but also offer an effective platform for sensing and catalysis. As extraordinary zero‐dimensional materials, carbon‐based quantum dots (CQDs) have been attracting tremendous attention due to their excellent properties such as good chemical stability, environmental friendliness, nontoxicity and abundant resources. Compared with the traditional methods for the preparation of CQDs, electrochemical (EC) methods offer advantages of simple instrumentation, mild reaction conditions, low cost and mass production. In return, CQDs could provide cost‐effective, environmentally friendly, biocompatible, stable and easily‐functionalizable probes, modifiers and catalysts for EC sensing. However, no specific review has been presented to systematically summarize both aspects until now. In this review, the EC preparation methods of CQDs are critically discussed focusing on CQDs. We further emphasize the applications of CQDs in EC sensors, electrocatalysis, biofuel cells and EC flexible devices. This review will further the experimental and theoretical understanding of the challenges and future prospective in this field, open new directions on exploring new advanced CQDs in EC to meet the high demands in diverse applications.  相似文献   
94.
Field effect transistors (FETs) based on 2D materials are of great interest for applications in ultrathin electronic and sensing devices. Here we demonstrate the possibility to add optical switchability to graphene FETs (GFET) by functionalizing the graphene channel with optically switchable azobenzene molecules. The azobenzene molecules were incorporated to the GFET channel by building a van der Waals heterostructure with a carbon nanomembrane (CNM), which is used as a molecular interposer to attach the azobenzene molecules. Under exposure with 365 nm and 455 nm light, azobenzene molecules transition between cis and trans molecular conformations, respectively, resulting in a switching of the molecular dipole moment. Thus, the effective electric field acting on the GFET channel is tuned by optical stimulation and the carrier density is modulated.  相似文献   
95.
The influence of the width of a lattice-matched Al0.82In0.18N/GaN single quantum well (SQW) on the absorption coefficients and wavelength of the intersubband transition (ISBT) has been investigated by solving the Schrödinger and Poisson equations self-consistently. The wavelength of 1—2 ISBT increases with L, the thickness of the single quantum well, ranging from 2.88 μm to 3.59 μm. The absorption coefficients of 1—2 ISBT increase with L at first and then decrease with L, with a maximum when L is equal to 2.6 nm. The wavelength of 1—3 ISBT decreases with L at first and then increases with L, with a minimum when L is equal to 4 nm, ranging from approximately 2.03 μm to near 2.11 μm. The absorption coefficients of 1—3 ISBT decrease with L. The results indicate that mid-infrared can be realized by the Al0.82In0.18N/GaN SQW. In addition, the wavelength and absorption coefficients of ISBT can be adjusted by changing the width of the SQW.  相似文献   
96.
利用坐标变换的方法并结合保角映射技术,论文介绍了一种利用常规的各向同性材料来设计声波器件的方法.基于此理论,设计了二维声波隐身斗篷,并进行有限元模拟,证明了该器件的有效性.另外由于设计中没有利用材料共振的性质,所以器件是宽带有效的.该方法将有助于拓宽声波功能器件的设计,并为实验验证声波器件提供了可能.  相似文献   
97.
Graphene nanostrips with single or few layers can be used as bending resonators with extremely high sensitivity to environmental changes. In this paper we report molecular dynamics (MD) simulation results on the fundamental and secondary resonant frequencies f of cantilever graphene nanostrips with different layer number n and different nanostrip length L. The results deviate significantly from the prediction of not only the Euler-Bernoulli beam theory (fnL−2), but also the Timoshenko's model. Since graphene nanostrips have extremely high intralayer Young's modulus and ultralow interlayer shear modulus, we propose a multibeam shear model (MBSM) that neglects the intralayer stretch but accounts for the interlayer shear. The MBSM prediction of the fundamental and secondary resonant frequencies f can be well expressed in the form ffmono∝[(n-1)/n]bL−2(1−b), where fmono denotes the corresponding resonant frequency as the layer number is 1, with b=0.61 and 0.77 for the fundamental and secondary resonant modes. Without any additional parameters fitting, the prediction from MBSM agrees excellently with the MD simulation results. The model is thus of importance for designing multilayer graphene nanostrips based applications, such as resonators, sensors and actuators, where interlayer shear has apparent impacts on the mechanical deformation, vibration and energy dissipation processes therein.  相似文献   
98.
A finite‐volume scheme for the stationary unipolar quantum drift‐diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth‐order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet‐Neumann boundary conditions. The numerical scheme is based on a Scharfetter‐Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483–1510, 2011  相似文献   
99.
基于迈克耳孙干涉仪原理,设计了利用双光束干涉效应的微机械光纤信号调制器.实验中从输入端输入的光纤信号,经分光板后分为光强相等的透射光束与反射光束;调制信号以电压形式加载于压电陶瓷,使其伸缩振荡,以调制透射光束与反射光束之间的光程差;透射光束与反射光束经透镜聚焦后在输出端面发生双光束干涉,在输出端输出被调制的光信号,再耦...  相似文献   
100.
Zinc oxide (ZnO) thin films were deposited on unheated silicon substrates via radio frequency (RF) magnetron sputtering, and the post-deposition annealing of the ZnO thin films was performed at 400 °C, 600 °C, 800 °C, and 1000 °C. The characteristics of the thin films were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The films were then used to fabricate surface acoustic wave (SAW) resonators. The effects of post-annealing on the SAW devices are discussed in this work. Resulting in the 600 °C is determined as optimal annealing temperature for SAW devices. At 400 °C, the microvoids exit between the grains yield large root mean square (RMS) surface roughness and higher insertion losses in SAW devices. The highest RMS surface roughness, crack and residual stress cause a reduction of surface velocity (about 40 m/s) and increase dramatically insertion loss at 1000 °C. The SAW devices response becomes very weak at this temperature, the electromechanical coupling coefficient (k2) of ZnO film decrease from 3.8% at 600 °C to 1.49% at 1000 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号